Formation, persistence, and identification of DNA adducts formed by the carcinogenic environmental pollutant o-anisidine in rats.

نویسندگان

  • Karel Naiman
  • Martin Dracínský
  • Petr Hodek
  • Markéta Martínková
  • Heinz H Schmeiser
  • Eva Frei
  • Marie Stiborová
چکیده

2-Methoxyaniline (o-anisidine) is an industrial and environmental pollutant causing tumors of urinary bladder in rodents. Here, we investigated the formation and persistence of DNA adducts in the Wistar rat. Using the (32)P-postlabeling method, three o-anisidine-derived DNA adducts were found in several organs of rats treated with a total dose of 0.53 mg o-anisidine/kg body wt (0.15, 0.18, and 0.2 mg/kg body wt ip in the first, second, and third day, respectively), of which the urinary bladder had the highest levels. At four posttreatment times (1 day, 13 days, 10 weeks, and 36 weeks), DNA adducts in bladder, liver, kidney, and spleen of rats were analyzed to study their persistence. In all time points, the highest total adduct levels were found in urinary bladder (39 adducts per 10(7) nucleotides after 1 day and 15 adducts per 10(7) nucleotides after 36 weeks) where 39% adducts remained. In contrast to the urinary bladder, no persistence was detected in other organs. All three DNA adducts were identified as deoxyguanosine adducts. When deoxyguanosine was reacted with the oxidative metabolite of o-anisidine, N-(2-methoxyphenyl)hydroxylamine, three adducts could be separated by high-performance liquid chromatography (HPLC) and were identified by mass spectroscopy and/or nuclear magnetic resonance spectrometry. All adducts are products of the nitrenium/carbenium ions, the reactive species generated from N-(2-methoxyphenyl)hydroxylamine. The major adduct was identified to be N-(deoxyguanosin-8-yl)-2-methoxyaniline. Using cochromatography on HPLC, this adduct was found to be identical to the major adduct generated by activation of o-anisidine in vitro and in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genotoxic mechanisms for the carcinogenicity of the environmental pollutants and carcinogens o-anisidine and 2-nitroanisole follow from adducts generated by their metabolite N-(2-methoxyphenyl)-hydroxylamine with deoxyguanosine in DNA

An aromatic amine, o-anisidine (2-methoxyaniline) and its oxidative counterpart, 2-nitroanisole (2-methoxynitrobenzene), are the industrial and environmental pollutants causing tumors of the urinary bladder in rats and mice. Both carcinogens are activated to the same proximate carcinogenic metabolite, N-(2-methoxyphenyl)hydroxylamine, which spontaneously decomposes to nitrenium and/or carbenium...

متن کامل

Identification of a genotoxic mechanism for 2-nitroanisole carcinogenicity and of its carcinogenic potential for humans.

2-Nitroanisole (2-NA) is an important industrial pollutant and a potent bladder carcinogen for rodents. The mechanism of its carcinogenicity was investigated in this study. Here we have used two independent methods, (32)P-post-labeling and (3)H-labeled 2-NA, to show that 2-NA binds covalently to DNA in vitro after reductive activation by human hepatic cytosol and xanthine oxidase (XO). We also ...

متن کامل

Carcinogenic pollutants o-nitroanisole and o-anisidine are substrates and inducers of cytochromes P450.

2-Methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole) are important pollutants and potent carcinogens for rodents. o-Anisidine is oxidized by microsomes of rats and rabbits to N-(2-methoxyphenyl)hydroxylamine that is also formed as the reduction metabolite of o-nitroanisole. o-Anisidine is a promiscuity substrate of rat and rabbit cytochrome P450 (CYP) enzymes, because CYPs ...

متن کامل

O-Anisidine Degradation by Fenton’s Reagent and Reaction Time Estimation

O-Anisidines (OAs) are extensively used as an intermediate for chemical reactions to produce various triphenylmethane and azo dyes, and also in manufacturing numerous pigments. They are found to be highly toxic and have carcinogenic properties, so it is imperative to treat OA solutions before disposal. In this study a promising approach to degrade OA solutions has been carried out using Fenton’...

متن کامل

O-Anisidine Degradation by Fenton’s Reagent and Reaction Time Estimation

O-Anisidines (OAs) are extensively used as an intermediate for chemical reactions to produce various triphenylmethane and azo dyes, and also in manufacturing numerous pigments. They are found to be highly toxic and have carcinogenic properties, so it is imperative to treat OA solutions before disposal. In this study a promising approach to degrade OA solutions has been carried out using Fenton’...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 127 2  شماره 

صفحات  -

تاریخ انتشار 2012